Copied to
clipboard

G = C6214D4order 288 = 25·32

11st semidirect product of C62 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C6214D4, C62.257C23, (C6×D4)⋊15S3, C3⋊Dic316D4, C6.131(S3×D4), (C2×C12).251D6, (C22×C6).97D6, C625C420C2, C3225(C4⋊D4), C37(C23.14D6), C6.11D1226C2, (C6×C12).267C22, C6.Dic626C2, C222(C327D4), (C2×C62).74C22, C6.108(D42S3), C2.18(C12.D6), (D4×C3×C6)⋊18C2, C2.27(D4×C3⋊S3), (C2×D4)⋊5(C3⋊S3), (C2×C6)⋊9(C3⋊D4), (C3×C6).285(C2×D4), C6.126(C2×C3⋊D4), C23.23(C2×C3⋊S3), (C2×C327D4)⋊12C2, C2.15(C2×C327D4), (C3×C6).154(C4○D4), (C2×C6).274(C22×S3), (C22×C3⋊Dic3)⋊10C2, C22.61(C22×C3⋊S3), (C22×C3⋊S3).46C22, (C2×C3⋊Dic3).167C22, (C2×C4).19(C2×C3⋊S3), SmallGroup(288,796)

Series: Derived Chief Lower central Upper central

C1C62 — C6214D4
C1C3C32C3×C6C62C22×C3⋊S3C2×C327D4 — C6214D4
C32C62 — C6214D4
C1C22C2×D4

Generators and relations for C6214D4
 G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, cac-1=a-1, dad=a-1b3, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1068 in 282 conjugacy classes, 79 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, C3⋊Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C62, C62, Dic3⋊C4, D6⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C6×D4, C2×C3⋊Dic3, C2×C3⋊Dic3, C327D4, C6×C12, D4×C32, C22×C3⋊S3, C2×C62, C23.14D6, C6.Dic6, C6.11D12, C625C4, C22×C3⋊Dic3, C2×C327D4, D4×C3×C6, C6214D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, C3⋊D4, C22×S3, C4⋊D4, C2×C3⋊S3, S3×D4, D42S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, C23.14D6, D4×C3⋊S3, C12.D6, C2×C327D4, C6214D4

Smallest permutation representation of C6214D4
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 18 50 94 43 121)(2 13 51 95 44 122)(3 14 52 96 45 123)(4 15 53 91 46 124)(5 16 54 92 47 125)(6 17 49 93 48 126)(7 86 81 78 116 42)(8 87 82 73 117 37)(9 88 83 74 118 38)(10 89 84 75 119 39)(11 90 79 76 120 40)(12 85 80 77 115 41)(19 132 34 59 135 99)(20 127 35 60 136 100)(21 128 36 55 137 101)(22 129 31 56 138 102)(23 130 32 57 133 97)(24 131 33 58 134 98)(25 72 110 65 143 107)(26 67 111 66 144 108)(27 68 112 61 139 103)(28 69 113 62 140 104)(29 70 114 63 141 105)(30 71 109 64 142 106)
(1 103 97 115)(2 108 98 120)(3 107 99 119)(4 106 100 118)(5 105 101 117)(6 104 102 116)(7 48 69 56)(8 47 70 55)(9 46 71 60)(10 45 72 59)(11 44 67 58)(12 43 68 57)(13 144 24 76)(14 143 19 75)(15 142 20 74)(16 141 21 73)(17 140 22 78)(18 139 23 77)(25 135 39 123)(26 134 40 122)(27 133 41 121)(28 138 42 126)(29 137 37 125)(30 136 38 124)(31 86 93 113)(32 85 94 112)(33 90 95 111)(34 89 96 110)(35 88 91 109)(36 87 92 114)(49 62 129 81)(50 61 130 80)(51 66 131 79)(52 65 132 84)(53 64 127 83)(54 63 128 82)
(2 93)(3 5)(4 91)(6 95)(7 26)(8 65)(9 30)(10 63)(11 28)(12 61)(13 49)(14 125)(15 53)(16 123)(17 51)(18 121)(19 137)(20 127)(21 135)(22 131)(23 133)(24 129)(25 73)(27 77)(29 75)(31 98)(33 102)(34 36)(35 100)(37 143)(38 71)(39 141)(40 69)(41 139)(42 67)(43 50)(44 126)(45 54)(46 124)(47 52)(48 122)(55 132)(56 134)(57 130)(58 138)(59 128)(60 136)(62 76)(64 74)(66 78)(68 80)(70 84)(72 82)(79 140)(81 144)(83 142)(85 112)(86 108)(87 110)(88 106)(89 114)(90 104)(92 96)(99 101)(103 115)(105 119)(107 117)(109 118)(111 116)(113 120)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,18,50,94,43,121)(2,13,51,95,44,122)(3,14,52,96,45,123)(4,15,53,91,46,124)(5,16,54,92,47,125)(6,17,49,93,48,126)(7,86,81,78,116,42)(8,87,82,73,117,37)(9,88,83,74,118,38)(10,89,84,75,119,39)(11,90,79,76,120,40)(12,85,80,77,115,41)(19,132,34,59,135,99)(20,127,35,60,136,100)(21,128,36,55,137,101)(22,129,31,56,138,102)(23,130,32,57,133,97)(24,131,33,58,134,98)(25,72,110,65,143,107)(26,67,111,66,144,108)(27,68,112,61,139,103)(28,69,113,62,140,104)(29,70,114,63,141,105)(30,71,109,64,142,106), (1,103,97,115)(2,108,98,120)(3,107,99,119)(4,106,100,118)(5,105,101,117)(6,104,102,116)(7,48,69,56)(8,47,70,55)(9,46,71,60)(10,45,72,59)(11,44,67,58)(12,43,68,57)(13,144,24,76)(14,143,19,75)(15,142,20,74)(16,141,21,73)(17,140,22,78)(18,139,23,77)(25,135,39,123)(26,134,40,122)(27,133,41,121)(28,138,42,126)(29,137,37,125)(30,136,38,124)(31,86,93,113)(32,85,94,112)(33,90,95,111)(34,89,96,110)(35,88,91,109)(36,87,92,114)(49,62,129,81)(50,61,130,80)(51,66,131,79)(52,65,132,84)(53,64,127,83)(54,63,128,82), (2,93)(3,5)(4,91)(6,95)(7,26)(8,65)(9,30)(10,63)(11,28)(12,61)(13,49)(14,125)(15,53)(16,123)(17,51)(18,121)(19,137)(20,127)(21,135)(22,131)(23,133)(24,129)(25,73)(27,77)(29,75)(31,98)(33,102)(34,36)(35,100)(37,143)(38,71)(39,141)(40,69)(41,139)(42,67)(43,50)(44,126)(45,54)(46,124)(47,52)(48,122)(55,132)(56,134)(57,130)(58,138)(59,128)(60,136)(62,76)(64,74)(66,78)(68,80)(70,84)(72,82)(79,140)(81,144)(83,142)(85,112)(86,108)(87,110)(88,106)(89,114)(90,104)(92,96)(99,101)(103,115)(105,119)(107,117)(109,118)(111,116)(113,120)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,18,50,94,43,121)(2,13,51,95,44,122)(3,14,52,96,45,123)(4,15,53,91,46,124)(5,16,54,92,47,125)(6,17,49,93,48,126)(7,86,81,78,116,42)(8,87,82,73,117,37)(9,88,83,74,118,38)(10,89,84,75,119,39)(11,90,79,76,120,40)(12,85,80,77,115,41)(19,132,34,59,135,99)(20,127,35,60,136,100)(21,128,36,55,137,101)(22,129,31,56,138,102)(23,130,32,57,133,97)(24,131,33,58,134,98)(25,72,110,65,143,107)(26,67,111,66,144,108)(27,68,112,61,139,103)(28,69,113,62,140,104)(29,70,114,63,141,105)(30,71,109,64,142,106), (1,103,97,115)(2,108,98,120)(3,107,99,119)(4,106,100,118)(5,105,101,117)(6,104,102,116)(7,48,69,56)(8,47,70,55)(9,46,71,60)(10,45,72,59)(11,44,67,58)(12,43,68,57)(13,144,24,76)(14,143,19,75)(15,142,20,74)(16,141,21,73)(17,140,22,78)(18,139,23,77)(25,135,39,123)(26,134,40,122)(27,133,41,121)(28,138,42,126)(29,137,37,125)(30,136,38,124)(31,86,93,113)(32,85,94,112)(33,90,95,111)(34,89,96,110)(35,88,91,109)(36,87,92,114)(49,62,129,81)(50,61,130,80)(51,66,131,79)(52,65,132,84)(53,64,127,83)(54,63,128,82), (2,93)(3,5)(4,91)(6,95)(7,26)(8,65)(9,30)(10,63)(11,28)(12,61)(13,49)(14,125)(15,53)(16,123)(17,51)(18,121)(19,137)(20,127)(21,135)(22,131)(23,133)(24,129)(25,73)(27,77)(29,75)(31,98)(33,102)(34,36)(35,100)(37,143)(38,71)(39,141)(40,69)(41,139)(42,67)(43,50)(44,126)(45,54)(46,124)(47,52)(48,122)(55,132)(56,134)(57,130)(58,138)(59,128)(60,136)(62,76)(64,74)(66,78)(68,80)(70,84)(72,82)(79,140)(81,144)(83,142)(85,112)(86,108)(87,110)(88,106)(89,114)(90,104)(92,96)(99,101)(103,115)(105,119)(107,117)(109,118)(111,116)(113,120) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,18,50,94,43,121),(2,13,51,95,44,122),(3,14,52,96,45,123),(4,15,53,91,46,124),(5,16,54,92,47,125),(6,17,49,93,48,126),(7,86,81,78,116,42),(8,87,82,73,117,37),(9,88,83,74,118,38),(10,89,84,75,119,39),(11,90,79,76,120,40),(12,85,80,77,115,41),(19,132,34,59,135,99),(20,127,35,60,136,100),(21,128,36,55,137,101),(22,129,31,56,138,102),(23,130,32,57,133,97),(24,131,33,58,134,98),(25,72,110,65,143,107),(26,67,111,66,144,108),(27,68,112,61,139,103),(28,69,113,62,140,104),(29,70,114,63,141,105),(30,71,109,64,142,106)], [(1,103,97,115),(2,108,98,120),(3,107,99,119),(4,106,100,118),(5,105,101,117),(6,104,102,116),(7,48,69,56),(8,47,70,55),(9,46,71,60),(10,45,72,59),(11,44,67,58),(12,43,68,57),(13,144,24,76),(14,143,19,75),(15,142,20,74),(16,141,21,73),(17,140,22,78),(18,139,23,77),(25,135,39,123),(26,134,40,122),(27,133,41,121),(28,138,42,126),(29,137,37,125),(30,136,38,124),(31,86,93,113),(32,85,94,112),(33,90,95,111),(34,89,96,110),(35,88,91,109),(36,87,92,114),(49,62,129,81),(50,61,130,80),(51,66,131,79),(52,65,132,84),(53,64,127,83),(54,63,128,82)], [(2,93),(3,5),(4,91),(6,95),(7,26),(8,65),(9,30),(10,63),(11,28),(12,61),(13,49),(14,125),(15,53),(16,123),(17,51),(18,121),(19,137),(20,127),(21,135),(22,131),(23,133),(24,129),(25,73),(27,77),(29,75),(31,98),(33,102),(34,36),(35,100),(37,143),(38,71),(39,141),(40,69),(41,139),(42,67),(43,50),(44,126),(45,54),(46,124),(47,52),(48,122),(55,132),(56,134),(57,130),(58,138),(59,128),(60,136),(62,76),(64,74),(66,78),(68,80),(70,84),(72,82),(79,140),(81,144),(83,142),(85,112),(86,108),(87,110),(88,106),(89,114),(90,104),(92,96),(99,101),(103,115),(105,119),(107,117),(109,118),(111,116),(113,120)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F6A···6L6M···6AB12A···12H
order1222222233334444446···66···612···12
size1111224362222418181818362···24···44···4

54 irreducible representations

dim1111111222222244
type+++++++++++++-
imageC1C2C2C2C2C2C2S3D4D4D6D6C4○D4C3⋊D4S3×D4D42S3
kernelC6214D4C6.Dic6C6.11D12C625C4C22×C3⋊Dic3C2×C327D4D4×C3×C6C6×D4C3⋊Dic3C62C2×C12C22×C6C3×C6C2×C6C6C6
# reps11111214224821644

Matrix representation of C6214D4 in GL6(𝔽13)

010000
100000
0012000
0001200
000001
0000121
,
1200000
0120000
0001200
0011200
000010
000001
,
1200000
0120000
0041100
002900
000092
0000114
,
100000
0120000
000100
001000
000001
000010

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,4,2,0,0,0,0,11,9,0,0,0,0,0,0,9,11,0,0,0,0,2,4],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C6214D4 in GAP, Magma, Sage, TeX

C_6^2\rtimes_{14}D_4
% in TeX

G:=Group("C6^2:14D4");
// GroupNames label

G:=SmallGroup(288,796);
// by ID

G=gap.SmallGroup(288,796);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,254,219,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽